Responses to Reservations Raised Concerning the GLM Analyses of and Inferences Drawn from the Results from the Island Closure Feasibility Study

D. S. Butterworth
Marine Assessment and Resource Management Group, University of Cape Town

Abstract

This document provides responses to a number of reservations which have been raised locally over the past year to the GLM approach for analysis of the island closure feasibility study, and conclusions inferred from the results. The issues covered range from whether catch provides an index of local fish abundance, the Clark model of a relation between shoal size and predation, comparisons with what occurred in Namibia, the appropriate period for which islands need to be closed, an argued need to apply model selection methods when developing the basis for a power analysis, whether a step-function relationship is appropriate for describing the different results from closure vs non-closure of an area around an island to fishing, and what the default conclusion about the impact of fishing near to penguin colonies should be.

Background

During local discussions over recent months, a number of reservations have been raised concerning the GLM analyses, together with their results and inferences drawn therefrom, which have been applied to the results for penguin response variables forthcoming from measurements taken during the Island Closure Feasibility Study. (These GLM analyses were earlier versions of those presented in MARAM/IWS/DEC14/Peng/B4.)

This document details those reservations, with associated responses, on matters which have not been addressed in other of the documents to the Panel in this MARAM/IWS/DEC14/Peng/B series. Where the reservations are available in written form in earlier DAFF Working Group documents, and a relevant extract is being quoted, that quote is reproduced in red italics below. Details of references in those quotations are listed only if necessary.

Arguments that catch (near to an island) is an index of (local) abundance

[The source of the quotations following, until otherwise indicated, is Crawford et al. (2014).]

Item 1

Robinson and Butterworth (2014a, 2014b) were of the opinion that fishing around penguin colonies was of benefit to penguins. Their conclusion was based on outputs from GLM analyses of the form:

\[ \ln(F_{y,i}) = \alpha_y + \beta_i + \lambda_i(c_{y,i,p})/(\text{average}_{c_{i,p}}) + \epsilon_{y,i} \]  

(1)

where \( F \) is a penguin response variable (e.g. breeding success), \( y = \) year, \( i = \) island, \( \alpha_y \) is a year effect reflecting prevailing environmental conditions, \( \beta_i \) is an island effect, \( \lambda_i \) is a fishing effect, \( c_{y,i,p} \) is the catch taken in year \( y \) in the neighbourhood of island \( i \) of pelagic species \( p \), \( \text{average}_{c_{i,p}} \) is the average catch at island \( i \) of species \( p \) taken over the years considered and \( \epsilon_{y,i} \) is an error term. In a majority of instances they found that \( \lambda_i \) was positive, thence inferring a beneficial influence of fishing for penguins (Robinson and Butterworth 2014a). This inference though is based on the assumption that \( c_{y,i,p} \) is not an indicator of fish availability near island \( i \) (local availability), although a ready
availability of fish in the vicinity of an island might result both in improved catches in the island’s proximity and benefit for penguins.

The assumption promoted by the authors of this quotation that \( c_{y,i,p} \) is an indicator of fish availability (abundance) near island \( i \) is confounded by other effects. The fundamental flaw in making this assumption, which is widely rejected in fisheries, is explained in detail in MARAM/IWC/DEC14/Peng/B4 and also B10. The assumption is also refuted by the analysis of South African anchovy catch-related measures in MARAM/IWC/DEC14/Peng/B9 which indicates no useful relationship between these measures and anchovy abundance.

Item 2

Robinson and Butterworth (2013) used a variant of the above GLM, in which \( \alpha \) is replaced by \( \mu B_{y,p} \), where \( B \) is the annual (recruit or spawner) biomass in year \( y \) of species \( p \). However, \( c_{y,i,p} \) may be strongly correlated with \( B_{y,p} \) as was demonstrated for anchovy (spawner) at Dassen Island (Durant et al. 2010) (and occurs at Robben Island) and sardine (recruit and spawner) at both Robben Island and Dassen Island (Table 5 in Sherley 2014), despite Robinson (2013) and Butterworth (2014b) reporting that the average correlation is relatively small (\( r \sim 0.3 \)).

Indeed there may be instances where the correlation is higher than 0.3. But that does not negate the implications of the statement by Robinson (2013) that “A review of the correlation coefficients \( r \) between the biomass and catch time-series used in each model considered revealed that the average correlation is \( r \approx 0.3 \), which is reasonably small. (Compare the plots of survey biomass versus catches for the full time-series in Figures 2.4–2.6.) Severe distortion of parameter estimation tends to occur only when \( |r| > 0.7 \) (Dormann et al. 2013), and this threshold is breached in only a very few cases. In these cases, the variance-inflation factor 5 (VIF) was calculated. Results never exceeded 10, which is often used as a threshold for indicating severe collinearity, although even higher VIFs are often acceptable (O’Brien 2007).” Clearly if the average is about 0.3, there are many instances where the correlation is similar to or lower than that. One possible exception as cited here certainly does not negate a broadly evident feature of the data as a whole, and the implications that follow from that. Further, as pointed out in MARAM/IWS/DEC14/Peng/B4, even if cases where \( |r| > 0.7 \) are excluded from the overall set of results, the broad conclusions are unaltered.

Item 3

Robinson and Butterworth (2013) also assume that fish are similarly abundant around neighbouring islands and that these islands thus can be used as controls.

This reflects a serious misunderstanding of the implicit assumption (see also the more detailed explanation provided in Appendix B of MARAM/IWS/DEC14/Peng/B4). First note the island factor \( \beta_i \) in equation (1) above allows for the possibility of widely different catchabilities (or “available abundances”) (see that Appendix B) at the different islands (\( i \)) – there is NO requirement for “similar abundance”. The implicit assumption, which is far weaker than the authors of this quotation suggest, amounts, essentially only to positive correlation. It is difficult to envisage a plausible situation where that would not apply. Deviations from proportionality will be absorbed into the composite residual \( \epsilon_{y,i} \). It would require some extreme correlation structure, related also to the catches made, to result in large biases in estimates of \( \lambda \), and no examples of that have been provided by the authors of the quotation to allow the associated necessary review of their plausibility.

Item 4

This assumption is still to be tested using the small-scale fish surveys discussed below and requires further interpretation in the light of shifts in the centre of gravity of catches (Fairweather et al. 2006) and deterioration of seabird habitats off northwest South Africa (Waller et al. 2014).
These shifts and argued deterioration are irrelevant in this context. The separations between the island pairs in question are at a much smaller spatial scale. The analyses of these small scale surveys (MARAM/IWS/DEC14/Peng/B6) did not reveal any inconsistency with this assumption, though process errors associated with these surveys were also shown to be high, meaning that their information content is limited.

**Item 5**

The alternative assumption, i.e. that catches made in the vicinity of an island represent the availability of fish near that island, was adopted by Sherley et al. (2013). Those authors showed that, for African Penguins at Robben Island, breeding success and chick-fledging rates were positively related to local food availability, indexed through the annual industrial catch of anchovy made within 56 km (30 nautical miles) of the colony. They further found chick-fledging rates were depressed in 2-chick broods during years when anchovy contributed < 75% by mass to the diet of breeding birds and concluded that these results highlighted the importance of ensuring adequate local food availability for penguins during their reproductive cycle. Similarly, Durant et al. (2010) suggested fishing in the vicinity of Dassen Island might cause reduced participation by penguins in breeding and recommended that management of the purse-seine fishery be adjusted spatially in order to ensure adequate local food supplies for breeding African Penguins.

See the response to Item 1 above regarding the fundamental flaw in making this alternative assumption

**Item 6**

That locations of catches reflect the distributions of epipelagic fish is not a novel concept. It was used by Fairweather et al. (2006) to describe an eastward shift of sardine off South Africa between 1997 and 2005. Later, Sabarros et al. (2012) used catch per effort information, validated against fishery-independent hydroacoustic survey data matching in time and space, to identify locations of peaks of abundance (PoA) in epipelagic fish around the South African coast and magnitudes of the peaks. They demonstrated that at the 17 colonies of African Penguins in South Africa, numbers breeding were positively related to the magnitude of the nearest PoA of anchovy and sardine (combined) and negatively to the distance of the PoA from the colony. Similarly, numbers of Cape Gannets (which also feed mainly on anchovy and sardine) breeding at their three South African colonies were positively related to the magnitude of the nearest PoA and negatively related to its distance from the colony.

To assert that some broad indications of fish distribution are provided by catches is quite different to making assumptions that catch is proportional to biomass, which is one that is seriously questioned in fisheries (see the response to Item 1 above). It is in any case quite incorrect for the South African anchovy, where much of the abundance is on the Agulhas Bank and unfished because of lower densities – indeed before surveys commenced in the mid-1980s, the extended distribution of this species into this area was not known.

The claim in Sabarros et al. (2012) that the pelagic CPUE which they define is use-able as an index of abundance, and that this has been validated against hydroacoustic survey data, is scarcely credible. Fig. S2.2 of that paper is reproduced As Figure 1 at the end of this document. Coetzee (pers. commn) comments that: “This plot is incorrectly labelled. It is not backscattering but density (g.m$^{-2}$), so is in fact proportional to biomass. Sabarros and co-authors appear to have matched the data in time and space by using only May and November catch data that occurred within 10 nm of the central position of each density position. Obviously these densities are not accurate indications of biomass; they would need to be weighted by interval length, line length, stratum, area etc. to calculate the biomass.” One notes further that the catches considered occur over periods of a month, during which the fish could move substantially, and the data plotted are not species-specific. The $r^2$ value for the regression line shown is only some 4%, and hardly indicative of some meaningful relationship, particularly when
one notes that the data points about that line typically range from about four orders of magnitude above to four orders below the line. In any case, CPUE is scarcely used anywhere worldwide in the assessment of pelagic species because of its known unreliability as an index of abundance, inter alia because of likely non-linearity in the relationship (a factor Sabarros et al., 2012 ignore in their analyses) (see also the response to item 1 above).

**Item 7**

*Given the sophistication of South Africa’s purse-seine fishery and its ability to find fish over wide areas, as demonstrated by Fairweather et al. (2006), it might be expected that the distribution of catches, at least within the area of operation of the fishery, partially reflects the local availability of fish species targeted by the fishery. In view of this, it seems premature to conclude that positive $\lambda$s emanating from GLMs demonstrate a beneficial influence of fishing on penguins (Robinson and Butterworth 2014a). Rather they may be interpreted as confirming the importance of good local availability of prey for penguins.*

The many problems and associated inconsistencies with this last assertion have been explained elsewhere (see the response to Item 1 above). No cogent rebuttal of the GLM analyses by Robinson and the reliability of their resultant $\lambda$ estimates has been offered by the authors of this quotation.

**Item 8**

*Indeed, Sherley (2014) carried out an analysis replicating that of Robinson and Butterworth (2014a) for one penguin time-series, but in addition used AICc-based model selection to compare objectively a series of candidate models containing catches in the vicinity of islands and annual biomass estimates. He concluded: “much of the variance in the Active nest proportion that can be explained by catches in the vicinity of the islands can also be explained by the annual biomass estimates and vice-versa. This would seem to support the explanation mentioned on pg. 92 of Robinson (2013), but later discarded, that ‘fishery catches are naturally higher when a high abundance of fish is present in dense shoals—precisely the feeding environment which favours penguins’. In other words, both the fishing industry and the penguins are able to find sardine and anchovy close to Robben and Dassen islands in years when fish are abundant close to these islands” (Sherley 2014a).*

Counters to these arguments are provided above, and the comment by Robinson quoted is in the context of “other things being equal” – in practice they are not, which is one of the fundamental reasons why catch does not provide a reliable index of abundance (see the response to item 1 above). But furthermore and importantly, Sherley (2014) has completely misunderstood the nature of the power analysis computations being carried out, as explained further in Item 14 below. The issue here is Type II, not Type I error. To suggest that model selection be used in circumstances of time series of insufficient length to detect alternative further effects is hardly scientifically appropriate.

**Item 9**

*Should this be the case, it need not be “surprising” (Robinson 2013) that penguins and fishers both benefit from a ready availability of fish near islands – provided catches do not always reduce the local availability of prey below the threshold required by penguins to meet their food requirements. That threshold will depend inter alia on the size of the colony, reducing as numbers of birds at the colony decreases (e.g. Gaston et al. 2007). For example, a greater density of prey in the neighbourhood of Dassen Island would have been required to sustain the penguin colony there in 2004 (when 25,000 pairs were breeding) than in 2013 (when 2,600 pairs bred). However, this effect is not considered in equation (1). A density dependent response in the recruitment of immature penguins to Robben Island (Crawford et al. 2007) confirms the likelihood that densities of prey in the vicinities of colonies will influence the population dynamics of African Penguins. The need to understand how local food availability may be modified by fishing, and at what levels of local prey availability...*
penguins may be adversely influenced by catches near islands, was a strong motivation to initiate small-scale surveys of fish abundance around colonies of African Penguins.

The density dependent response estimation in Crawford et al. (2007) uses a method well known amongst fisheries scientists to be flawed, as was originally pointed out by John Pope. The regression indicated in the equation on the right hand column of pg 573 of that paper includes the independent variable $P$ on the right as well as the left hand side of the equation in a form that makes a negative correlation inevitable, but does not in fact provide any confirmation of the relationship claimed. Figure 2 shown at the end of this document uses results from the Robben Island penguin dynamics model of Robinson (2013), which uses a statistically justifiable estimation approach, to assess this relationship. Though some density-dependence is indicated, the effect is much weaker than indicated by Crawford et al. (2007), and with an $r^2$ ~ 0.2 which is much less than the $r^2$ ~ 0.8 claimed by Crawford et al. (2007). In any case, Figure 8 of MARAM/IWS/DEC14/Peng/3a shows a trendless relationship between penguin recruitment success and anchovy recruit biomass, hence providing no indication that reducing the extent of fishing would have an impact – a conclusion supported by the “river model” results of MARAM/IWS/DEC14/Peng/B5, which indicate that over the first decade of the current century, the fishery reduced the anchovy abundance off the west coast by typically only some 10% of the amount that would otherwise have been present. To put the claim above that a greater prey density was needed to feed penguins at Robben and Dassen in 2004 than in 2013, given the earlier higher numbers, in an appropriate context, one should note that the annual food requirements of penguins of a little more than some 20 000 tons (Robinson 2013, pg 161) constitute a mere 0.5% of the average annual production of sardine and anchovy resources over the first decade of the current century of about 4 million tons (de Moor and Butterworth, 2010). Thus consumption by penguins is negligible compared to the other sources of natural mortality on these fish, so that changes in penguin numbers by even, say, three-fold above their current levels would have a minimal impact on the abundances of their prey.

Arguments that the implications of Clark’s (1976) model of the relationship between predation and shoal size have been mis-stated

Item 10

Robinson (2013) cites Clark (1976) to suggest a possible mechanism for fishing benefiting penguins – “that fishing vessels tend to break up large shoals of pelagic fish, and predators are more likely to encounter prey if there are many small shoals rather than a few large shoals” (pg. 176). However, the argument above is applied inconsistently by Robinson (2013) and seemingly at odds with the original sentiment of Clark (1976). Robinson (2013 pg. 92) also states that “One possible mechanism underlying the apparent benefit of fishing to penguins is that the shoaling behaviour of small pelagic fish is a predator defence mechanism: although larger shoals are more readily located, surface to volume effects mean that in a larger shoal an individual fish is less likely to be eaten” (pg. 92). Clark (1976) states “Since predators are assumed to have fixed appetites, we can assume that the rate of predation is proportional to the rate of detection of schools. The rate of detection is in turn proportional to the visual volume of the school, provided the latter is small in relation to the total volume of seawater over which predators search”. In other words, large schools are easier to detect and to extract food from.

Of course this is part of Clark’s argument, but not all of it, and the authors of the quotation evidence a complete failure to understand his analyses. What Clark shows is that as a result of the surface to volume effect, the predation probability for an individual forage fish increases as shoal size drops. Consider the same forage fish biomass, divided either into a few large shoals, or into many smaller shoals (e.g. as a result of disturbance caused by
fishing). A single large shoal is indeed easier to find than a single small shoal. But in each case the probability of finding a single shoal has to be multiplied by the number of shoals. The combined surface area is larger in the case of the smaller shoals, hence rendering it easier for predators to find a shoal in that case, and consequently to forage more successfully.

**Item 11**

Furthermore, tight schooling behaviour makes feeding less efficient for planktivores so that pelagic fish will in any event need to spread out to feed (Eggers 1976). By working together, seabirds targeting fish schools benefit by disrupting the cohesiveness of predator avoidance tactics (Shealer 2002) and individual foraging success may increase with increasing group size (Götmark et al. 1986). Adult African Penguins tend to forage in groups (Frost et al. 1976, Wilson and Wilson 1990) and, based on observations of head-dipping movements that may signal readiness to dive, some synchronous diving, groups of penguins circling shoals of pelagic fish and the position of bite marks on fish (Wilson and Duffy 1986, Hockey et al. 2003), it has been inferred that at least some African Penguins forage co-operatively, herding prey into dense schools (rather than splitting such schools) and then striking them from below (Wilson and Wilson 1990, Ryan et al. 2012). The conspicuously striped plumage of adult African Penguins appears to promote dense, defensive schooling of small pelagic fish, creating so-called ‘bait balls’ that are easier to exploit (Wilson et al. 1987). Co-operative foraging by groups of African Penguins that numbered between 25 and 165 individuals was recently observed in Algoa Bay (Ryan et al. 2012).

Foraging strategies of seabirds are constrained by the dispersion and availability of different prey resources, the energetic costs of foraging and the rate at which food must be delivered to the nest during breeding (Lack 1968, Weimerskirch et al. 1994). Thus, prey supply has an important impact on bird biology, affecting activity, distribution, energetics, competitive abilities, breeding success and survival (e.g. Furness and Monaghan 1987, Montevecchi et al. 1988, Garthe et al. 1999). Since swimming is slower and more energetically expensive than flying (Pinshaw et al. 1977, Schmidt-Nielsen 1999), penguins require predictable food resources close to their colonies during breeding (Sherley et al. 2013). While volant seabirds (for example, albatrosses and petrels) may exploit food sources distant from their breeding sites (Weimerskirch et al. 1993, Péron et al. 2010), penguins are more limited in their foraging capabilities (Wilson 1985). For this reason penguins are especially sensitive as marine sentinels: they reflect the rate and nature of changes occurring in their marine environment (Boersma 2008). Effectively, any alterations in the marine environment caused by either natural phenomena and/or human-induced activities require flexible behavioural responses (Crawford 1998, Pichegru et al. 2010, Baylis et al. 2012) but African Penguins are constrained by their mode of locomotion and fidelity to sites once breeding (Hockey et al. 2005).

While this is interesting in a natural history context, it relevance to the problem under consideration is questionable. The reasons are given in detail in Appendix A of MARAM/IWS/DEC14/Peng/B4, and indicate why the only viable approach to solving that problem is provided by empirical approaches which measure the net effect of the numerous mechanisms at work.
Arguments based on comparisons with occurrences in Namibia

Item 12

Advantages postulated for colonial breeding in seabirds and water-birds include the acquisition of information that facilitates food finding (Erwin 1978, van Vessem and Draulans 1986) and it is noteworthy that, after Namibia’s sardine collapsed, at Possession Island colonies of penguins fragmented as birds fed predominately on squid, which may have been present in densities too low to favour co-operative hunting (Cordes et al. 1999). The sine qua non for African Penguins hoping to breed successfully at colonies and after that to survive to moult will be a sufficient density of prey in the neighbourhood of colonies. If that is prevented by excessive catches near colonies, it will be detrimental to penguins.

Certainly, but the comparison with Namibia is quite misleading. There fishing in the 1960-80 period reduced sardine biomass by certainly one order of magnitude if not two. In contrast the impact of current fishing mortalities on the SA anchovy population, which dominates the small pelagic biomass off the Robben and Dassen island penguin colonies during their peak breeding and fledging period, and is in any case generally undercaught compared to the TAC awarded, is only slight (Butterworth and de Moor, 2010).

Arguments related to the length of closure periods

[The source of the quotation following is Pichegru et al. (2014).]

Item 13

The final design of the feasibility study was agreed by consensus but was not based on the ornithologists’ best understanding of the biology of African Penguins. In particular, it was noted that the longevity of penguins, their delayed age at breeding and the long periods over which processes such as recruitment to colonies were expected to operate required long-term closures around colonies (see e.g. Crawford 2010, Pichegru et al. 2010b, Wanless and Moseley 2010) rather than rapid alternations of closures between “paired colonies”, which were favoured in order to provide estimates of process error (Butterworth 2010). Therefore, the inconclusive results of the feasibility study to date are not entirely unexpected.

None of the arguments made here to support long-term closures are in any way clear. The mechanisms suggested need to be elaborated in mathematical form so that it is evident exactly what they are suggested to be and how they are proposed to operate, so that their plausibility can be properly assessed. This is a pre-requisite to any attempted justification of the final statement made. Despite frequent requests, no response to this request for the detail necessary to justify these concerns has been made available.

Arguments that the GLM formulation that provides the basis of the power analysis should be structured on the basis of some model selection criterion

[The source of the quotation following is Sherley (2014).]

Item 14
Using AICc-based model selection, I show that there is no statistical support to use the estimates from the models presented in Robinson and Butterworth (2014). By comparing the parameter estimates from the best supported models and those with year as a fixed effect, I show that the estimates drawn from the over-parameterized models presented by Robinson and Butterworth (2014) can be unreliable. In addition, in four of the six catch series analysed here, there is little evidence that the catches made in the vicinity of the island add substantially to the deviance explained over and above that explained by the overall measures of prey availability.

This quotation serves to summarise what is a complete failure to understand the purpose of the feasibility study and the method used to analyse the data forthcoming from it, as was first proposed in 2007 and later endorsed in slightly modified form at the 2010 international stock assessment review workshop as the form of analysis to be used. With short time series showing inadequate data contrast, it is obviously not going to be possible to obtain statistically significant estimates of the effect of catches on penguin response variables, given residual noise. The whole purpose of the feasibility study, to be followed perhaps by an experiment, was to extend data series to be able to attain such significance, with the initial feasibility study to indicate first how long this would probably take. The document from which this quotation is taken indicates that model selection under AIC, in some cases excludes selection of catch as an explanatory variable. But that is exactly what is to be expected for a limited data set (as were those for a number of the penguin response variables at the time the feasibility study commenced) – roughly speaking the AIC criterion will, for a single additional estimable parameter, not select models where that parameter estimate is not statistically significant at the 15% level. Crucially though, a non-significant result does not necessarily imply absence of the associated effect, particularly given few data. It would hardly be precautionary to conclude in such cases that fishing has no impact on penguins. Obviously these are the very cases where a power analysis needs to be conducted to be clear on how much longer monitoring needs to continue to confirm whether a current non-significant catch effect might become significant, and such an analysis in turn clearly requires a model (desirably models to check robustness, as in Robinson’s work) which includes catch as an explanatory variable. In essence then, the quotation’s appeal to model selection exercises to effectively exclude catch from analyses in these cases is misguided and irrelevant.

Arguments that the effect of closure/non-closure of an area operates as a step-function

Item 15

Reservations have been raised in local discussions that as GLM analyses of the results from the feasibility study, such as those now reported in MARAM/IWS/DEC14/Peng/B4, did not contrast “open” and “closed” years but considered only the relative level of catch made within certain distances of colonies, the benefits of precluding fishing within the immediate precincts of islands may have been veiled.

The first GLM analyses of penguin response variables of this type (Brandao and Butterworth, 2007) was indeed structured in this “step function” manner – assuming the presence of absence of a multiplicative effect of fixed magnitude depending on whether an area around an island was open or closed to fishing. But in early discussions around that time, it was rapidly realised that this was inappropriate. The reason is evident from inspection of Figure 3, which shows the time series of sardine and anchovy catches made within different distances (and particularly within the sometimes closed area within 10 nm) of these islands. What is immediately apparent is that catches when this area when open span a wide range, including some very small years of very small catches. It would seem to make little sense to assume that the possible effect of these very small catches on penguin reproductive success is the same as that of much larger catches, but quite different to that in the absence of any catches. This is why the simplest form of relationship (linear proportionality) that avoids such a seemingly implausible assumption came to be used instead. Now clearly the real
relationship between the response variable and catch in equation (1) above would not be exactly linear (indeed it is obvious that linearity cannot be extrapolated to levels where the catch rises to a very large proportion of overall abundance). But the assumption of an appreciable discontinuity (step-function) at the origin in the relationship is scarcely plausible – this amounts to claiming that just a single haul by a purse-seiner near an island during a year would (in expectation) result in an appreciable change in reproductive success at the colony that year.

Arguments that since “existing evidence” is that the effects of fishing are negative, this should be the default conclusion

Item 16

[The source of the quotation following is Weller and Sherley (2014).]

The correlation of various penguin survival parameters (here, breeding probability and survival rates) to available prey biomass is borne out by a large body of research (Annex 1; see also Crawford et al., 2014). Breeding success and timing, colony formation, and survival of various age classes have repeatedly been shown to be both positively and negatively driven by food availability. In this regard it is the conflicting finding of Robinson (2013), where fishing (regardless of the corresponding reduction in local food biomass) is interpreted as having a beneficial effect on penguin recruitment, that requires further confirmation due to its unexpected nature. Crawford et al. (2014) address this in detail.

Note first that Robinson’s finding is mis-stated here – that has never been implied to apply “regardless”, as is clear from responses made under Items 12 and 15 above, but rather to pelagic fish catches, abundances and fishing mortalities in the recent ranges to which the GLM analyses pertain (i.e. interpolation, not extrapolation). But more importantly, as pointed out in many places above, and in other documents in this MARAM/IWS/DEC14/Peng/B series, many of the arguments raised, by, for example, Crawford et al. (2014), are problematic. If earlier analyses had already indicated an appreciable negative impact of pelagic fishing close to islands on penguin reproductive success as clearly as implied, there would have been no need in the first case to have initiated a feasibility study to be followed perhaps by an experiment to determine the net effect empirically. In these circumstances it hardly seems appropriate to claim that the studies referenced should provide the default conclusion. To the contrary, as explained in Appendix A of MARAM/IWS/DEC14/Peng/B4, it is necessarily empirical studies which must lead to such a conclusion, and the previous agreement to pursue the island closure studies, whose results are reported in MARAM/IWS/DEC14/Peng/B4, surely implicitly renders those results the basis on which any default conclusion would be drawn.

References


Figure 1: Relationship between raw catch data and hydroacoustic data that concur in time and space, as reported in Sabarros et al. (2012).
Figure 2: Top: Annual reproductive success $H$. Middle: Number of adult female penguins $N$. Bottom: Regression of $\ln H$ versus $N$. 
Figure 3: The time series of annual anchovy and sardine catches within 10, 20 and 30 nm of Dassen and of Robben Islands are shown in the upper group of plots. The lower group shows only the catches within 10 nm, together with indications of when these areas were closed to pelagic fishing.